
Topics in CS3, Fall 2007

Common to all areas
• define and use procedures
• given an error message, identify its cause
• give a good comment for a mystery procedure
• test a mystery procedure
• devise test suites that exercise all expressions in the program, along with

boundary cases
• critique a test suite
• simplify complex code
• find a bug
• fix the bug
• characterize input values that yield symptoms of the bug
• characterize input values that do not yield symptoms of the bug
• compare and contrast procedures

PreRecursion
• translate algebra to Scheme
• work with words and sentences
• predict the result of expressions involving an empty word or an empty

sentence
• compare and contrast English words and sentences with Scheme words and

sentences
• identify the effect of "shadowing" a procedure name
• supply parentheses and quotes to produce an expression with a given value
• identify misconceptions relating to misuse of parentheses and quotes
• work with conditionals, and, or, and not
• implement a procedure using and, or, and not instead of if and cond,

and vice versa
• use member? in place of large cond expressions
• check for a valid argument

Recursion
• design a general recursion from individual procedures that handle inputs of

size 0, 1, 2, 3, 4...
• supply base cases
• identify and prune redundant base cases
• supply recursive cases
• identify infinite recursions
• identify type mismatches between the value returned in the base case and

the value returned in the recursive case
• design a recursion involving both the butfirst and the butlast of a

word or sentence
• design a recursion that builds a sentence or word (front to back, or vice

versa)
• design a recursion involving pairs of words in a sentence or characters in a

word
• design a recursion with two arguments, both changing in the recursive call
• design an accumulating recursion
• understand tail versus embedded recursion
• design a nested recursion
• design a procedure that involves calls to two different recursive procedures
• provide base cases for a tree recursion
• trace a tree recursion
• count the number of recursive calls in a tree recursion that result from a

given call

Case Studies
• summarize the case study
• determine which of two procedures is written according to principles from

the case study
• model the development (testing and debugging) of a program

1

Higher order procedures
• identify the domain and range of a given function
• use the built-in higher-order procedures (keep, every, and

accumulate)
• supply the appropriate higher-order procedure to produce a given result
• supply an argument to a given higher-order procedure to produce a given

result
• identify errors in the use of the built-in higher-order procedures
• give a good comment for arguments to a higher-order procedure
• compare recursive implementations of the built-in higher-order procedures
• identify which direction accumulate accumulates
• supply parentheses to get a given result
• use lambda and use let
• identify the need to use lambda
• implement and use a higher-order procedure that's not built-in

Lists and beyond
• use car and cdr
• distinguish the effects of cons, list, and append
• supply one of cons, list, and append to produce a given result
• give a combination of uses of these procedures that produces a given result
• add parentheses and quotes to produce a given result
• use member
• use and implement a semipredicate
• identify appropriate uses for member
• use the built-in higher-order procedures for lists (map, filter, reduce,

and apply)
• distinguish reduce, accumulate, and apply
• use map with multiple list arguments
• use assoc
• provide a table for use with assoc
• identify appropriate uses for assoc
• write a procedure to process a generalized list

• analyze a procedure that processes a generalized list
• Understand the structure of trees, and write a HOF program to process a

tree. (Mutual recursion is not covered in this course).
• Understand the difference between sequential and functional programming
• Use begin to do sequential programming
• Use show and display to send output to the screen
• Use random to generate random numbers

Working with existing programs
(Difference Between Dates, Roman Numerals, Tic Tac Toe, and Change Making)
• draw a call tree
• provide sample calls that produce a given result or result in a given number

of calls to a given procedure
• identify appropriate arguments for a procedure
• given input values for a procedure, determine the value it returns
• given erroneous input values for a procedure, determine if and where it

crashes
• given a category of input values for a procedure, determine all possible

values it could return
• use the procedures to implement some other computation
• modify or extend the program
• rewrite one of the procedures
• determine the effect of making a given modification
• given symptoms of a bug resulting from changing a single word, integer, or

symbol in the program, identify possibilities for the bug and describe how
you determined them

• invent bugs for your partner to find
• invent a test case that exercises as much of the program as possible
• provide a good comment for one of the procedures

2

	Topics in CS3, Fall 2007
	Common to all areas
	PreRecursion
	Recursion
	Case Studies
	Higher order procedures
	Lists and beyond
	Working with existing programs

